Vanadium-based nanostructure materials for secondary lithium battery applications.

نویسندگان

  • Hui Teng Tan
  • Xianhong Rui
  • Wenping Sun
  • Qingyu Yan
  • Tuti Mariana Lim
چکیده

Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to "create" newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast, completely reversible li insertion in vanadium pentoxide nanoribbons.

Layered-structure nanoribbons with efficient electron transport and short lithium ion insertion lengths are promising candidates for Li battery applications. Here we studied at the single nanostructure level the chemical, structural, and electrical transformations of V2O5 nanoribbons. We found that transformation of V2O5 into the omega-Li3V2O5 phase depends not only on the width but also the th...

متن کامل

Vanadium Oxide Nanostructures for Lithium Battery Applications

Lithium and Lithium-ion batteries for portable electronic devices and hybrid electric vehicles have gained great importance for energy storage today. However, how to prepare cathode materials with higher energy density, high potentials, and longer cycle life is still a challenge. Compared with commercial LiCoO2, vanadium oxides have higher specific capacity and interesting layered structures, w...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

Tunable Mechanochemistry of Lithium Battery Electrodes.

The interplay between mechanical strains and battery electrochemistry, or the tunable mechanochemistry of batteries, remains an emerging research area with limited experimental progress. In this report, we demonstrate how elastic strains applied to vanadium pentoxide (V2O5), a widely studied cathode material for Li-ion batteries, can modulate the kinetics and energetics of lithium-ion intercala...

متن کامل

Layered vanadium and molybdenum oxides: batteries and electrochromics†

The layered oxides of vanadium and molybdenum have been studied for close to 40 years as possible cathode materials for lithium batteries or electrochromic systems. The highly distorted metal octahedra naturally lead to the formation of a wide range of layer structures, which can intercalate lithium levels exceeding 300 Ah/kg. They have found continuing success in medical devices, such as pacem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 35  شماره 

صفحات  -

تاریخ انتشار 2015